晶体

物质的质点在三维空间重复排列形成的物质

晶体晶体

晶体(crystal)是物质的质点(分子、原子、离子)在三维空间作有规律的周期性重复排列所形成的物质。

晶体又分为单晶体和多晶体,晶体形成的实质是在一定条件下,物质质点有规则排列的过程。由于质点呈规则排列的结果,使晶体内部产生了一定的构造格架,所以实质上晶体就是具有一定空间格子构造的固体。晶体具有整齐规则的几何外形、固定熔点和各向异性。而如机械强度、导热性、热膨胀等,称为各向异性。晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。气体、液体和非晶物质在一定的合适条件下也可以转变成晶体。常见的晶体有萘、海波、冰、各种金属。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。

目录

    1 基本信息 2 基本简介 3 科学研究

      基本信息

      中文名:晶体

      常见晶体:萘、海波、冰、各种金属

      主要特性:长程有序、均匀性、各向异性、对称性、自限性

      缺陷类型:点缺陷、线缺陷、面缺陷、体缺陷

      本质:固体

      外文名:crystal

      晶体分类:离子晶体、原子晶体、分子晶体和金属晶体

      定义:物质的质点(分子、原子、离子)在三维空间作有规律的周期性重复排列所形成的物质

      学科:物理

      特点:呈现规则的几何形状

      基本简介

      晶体晶体

      固态物质分为晶体和非晶体。非晶体的外形是不规则的,物理性质也表现为各向同性。非晶体是随温度的升高逐渐由硬变软,而熔化,非晶体没有固定的熔点。

      晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。组成晶体的微粒──原子是对称排列的,形成很规则的几何空间点阵。空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状。组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力。对每一个原子来说,其他原子对它作用的总效果,使它们都处在势能最低的状态,因此很稳定,宏观上就表现为形状固定,且不易改变。晶体内部原子有规则的排列,引起了晶体各向不同的物理性质。例如原子的规则排列可以使晶体内部出现若干个晶面,立方体的食盐就有三组与其边面平行的平面。如果外力沿平行晶面的方向作用,则晶体就很容易滑动(变形),这种变形还不易恢复,称为晶体的弹性。从这里可以看出沿晶面的方向,其弹性限度小,只要稍加力,就超出了其弹性限度,使其不能复原;而沿其他方向则弹性限度很大,能承受较大的压力、拉力而仍满足胡克定律。当晶体吸收热量时,由于不同方向原子排列疏密不同,间距不同,吸收的热量多少也不同,于是表现为有不同的传热系数和膨胀系数。

      晶体晶体

      (1)晶体拥有整齐规则的几何外形,即晶体的自限性。

      (2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。

      (3)晶体有各向异性的特点:固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。

      晶体是内部质点在三维空间成周期性重复排列的固体,具有长程有序,并成周期性重复排列。

      非晶体是内部质点在三维空间不成周期性重复排列的固体,具有近程有序,但不具有长程有序。如玻璃。外形为无规则形状的固体。

      (4)晶体可以使X光发生有规律的衍射。

      宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。

      (5)晶体相对应的晶面角相等,称为晶面角守恒。

      结构

      晶体晶体

      晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。

      固体可分为晶体、非晶体和准晶体三大类。

      具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。固态物质是否为晶体,一般可由X射线衍射法予以鉴定。

      晶体内部结构中的质点(原子、离子、分子、原子团)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。组成某种几何多面体的平面称为晶面,由于生长的条件不同,晶体在外形上可能有些歪斜,但同种晶体晶面间夹角(晶面角)是一定的,称为晶面角不变原理。

      晶体按其内部结构可分为七大晶系和14种晶格类型。晶体都有一定的对称性,有32种对称元素系,对应的对称动作群称做晶体系点群。按照内部质点间作用力性质不同,晶体可分为离子晶体、原子晶体、分子晶体、金属晶体等四大典型晶体,如食盐、金刚石、干冰和各种金属等。同一晶体也有单晶和多晶(或粉晶)的区别。在实际中还存在混合型晶体。说到晶体,还得从结晶谈起。大家知道,所有物质都是由原子或分子构成的。众所周知,物质有三种聚集形态:气体、液体和固体。研究表明,固体可分为晶体、非晶体和准晶体三大类。

      几何形状

      晶体通常呈现规则的几何形状,就像有人特意加工出来的一样。其内部原子的排列十分规整严格,比士兵的方阵还要整齐得多。如果把晶体中任意一个原子沿某一方向平移一定距离,必能找到一个同样的原子。而玻璃、珍珠、沥青、塑料等非晶体,内部原子的排列则是杂乱无章的。准晶体是发现的一类新物质,其内部排列既不同于晶体,也不同于非晶体。

      晶体晶体

      究竟什么样的物质才能算作晶体呢?首先,除液晶外,晶体一般是固体形态。其次,组成物质的原子、分子或离子具有规律、周期性的排列,这样的物质就是晶体。

      但仅从外观上,用肉眼很难区分晶体、非晶体与准晶体。那么,如何才能快速鉴定出它们呢?一种最常用的技术是X光技术。用X光对固体进行结构分析,你很快就会发现,晶体和非晶体、准晶体是截然不同的三类固体。

      为了描述晶体的结构,先把构成晶体的原子当成一个点,再用假想的线段将这些代表原子的各点连接起来,就绘成了像图中所表示的格架式空间结构。这种用来描述原子在晶体中排列的几何空间格架,称为晶格。由于晶体中原子的排列是有规律的,可以从晶格中拿出一个完全能够表达晶格结构的最小单元,这个最小单元就叫作晶胞。许多取向相同的晶胞组成晶粒,由取向不同的晶粒组成的物体,叫做多晶体,而单晶体内所有的晶胞取向完全一致,常见的单晶如单晶硅、单晶石英。大家最常见到的一般是多晶体。

      由于物质内部原子排列的明显差异,导致了晶体与非晶体物理化学性质的巨大差异。例如,晶体有固定的熔点,当温度高到某一温度便立即熔化;而玻璃及其它非晶体则没有固定的熔点,从软化到熔化是一个较大的温度范围。

      类别实例

      晶体晶体

      1.立方晶系钻石明矾金铁铅

      2.正方晶系锡金红石白钨

      3.斜方晶系硫碘硝酸银

      4.单斜晶系硼砂蔗糖石膏

      5.三斜晶系硫酸铜硼酸

      6.三方(菱形)晶系砷水晶冰石墨

      7.六方晶系镁锌铍镉钙

      特性

      晶体晶体

      晶体的一些性质取决于将分子联结成固体的结合力。这些力通常涉及原子或分子的最外层的电子(或称价电子)的相互作用。如果结合力强,晶体有较高的熔点。如果它们稍弱一些,晶体将有较低的熔点,也可能较易弯曲和变形。如果它们很弱,晶体只能在很低温度下形成,此时分子可利用的能量不多。

      有四种主要的晶体键。离子晶体由正离子和负离子构成,靠不同电荷之间的引力(离子键)结合在一起。氯化钠是离子晶体的一例。原子晶体(共价晶体)的原子或分子共享它们的价电子(共价键)。钻石、锗和硅是重要的共价晶体。金属晶体是金属的原子变为离子,被自由的价电子所包围,它们能够容易地从一个原子运动到另一个原子,可形象的描述为沉浸在自由电子的海洋里(金属键)。当这些电子全在同一方向运动时,它们的运动称为电流。分子晶体的分子完全不分享它们的电子。它们的结合是由于从分子的一端到另一端电场有微小的变动。因为这个结合力很弱(范德华力和氢键),这些晶体在很低的温度下就熔化,且硬度极低。典型的分子结晶如固态氧和冰。

      在离子晶体中,电子从一个原子转移到另一个原子。共价晶体的原子分享它们的价电子。金属原子的一端有少量的负电荷,另一端有少量的正电荷。一个弱的电引力使分子就位。

      用来制作工业用的晶体的技术之一,是从熔液中生长。籽晶可用来促进单晶体的形成。在这个工序里,籽晶降落到装有熔融物质的容器中。籽晶周围的熔液冷却,它的分子就依附在籽晶上。这些新的晶体分子承接籽晶的取向,形成了一个大的单晶体。蓝宝石和红宝石的基本成分是氧化铝,它的熔点高,制成一个盛装它的熔液的容器是困难的。人工合成蓝宝石和红宝石是用维尔纳叶法(焰熔法)制成,即将氧化铝粉和少量上色用的钛、铁或铬粉,通过火焰下滴到籽晶上。火焰将粉熔解,然后在籽晶上重新结晶。

      生长人造钻石需要高于1600℃的温度和60000倍大气压。人造钻石砂粒小且黑,它们适宜工业应用。区域熔化过程用来纯化半导体工业中的硅晶体。一个单晶体垂直悬挂在硅棒的顶端上。在两者接触处加热,棒的顶端熔化,并在单晶体上重结晶,然后将加热处慢慢地沿棒下移。

      科学研究

      分类

      晶体晶体

      晶体缺陷各种偏离晶体结构中质点周期重复排列的因素,严格说,造成晶体点阵结构周期势场畸变的一切因素。

      如晶体中进入了一些杂质。这些杂质也会占据一定的位置,这样破坏了原质点排列的周期性,在二十世纪中期,发现晶体中缺陷的存在,它严重影响晶体性质,有些是决定性的,如半导体导电性质,几乎完全是由外来杂质原子和缺陷存在决定的,许多离子晶体的颜色、发光等。另外,固体的强度,陶瓷、耐火材料的烧结和固相反应等等均与缺陷有关,晶体缺陷是近三、四年国内外科学研究十分注意的一个内容。

      根据缺陷的作用范围把真实晶体缺陷分四类:

      点缺陷:在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子。

      线缺陷:在二维尺寸小,在另一维尺寸大,可被电镜观察到。

      面缺陷:在一维尺寸小,在另二维尺寸大,可被光学显微镜观察到。

      体缺陷:在三维尺寸较大,如镶嵌块,沉淀相,空洞,气泡等。

      按形成的原因不同分三类:

      1热缺陷(晶格位置缺陷)

      在晶体点阵的正常格点位出现空位,不该有质点的位置出现了质点(间隙质点)。

      2组成缺陷

      外来质点(杂质)取代正常质点位置或进入正常结点的间隙位置。

      3电荷缺陷

      晶体中某些质点个别电子处于激发状态,有的离开原来质点,形成自由电子,在原来电子轨道上留下了电子空穴。

      缺陷符号及缺陷反应方程式

      缺陷符号以二元化合物MX为例

      (1)晶格空位:正常结点位没有质点,VM,VX

      (2)间隙离子:除正常结点位置外的位置出现了质点,Mi,Xx

      (3)错位离子:M排列在X位置,或X排列在M位置上,若处在正常结点位置上,则MM,XX

      (4)取代离子:外来杂质L进入晶体中,若取代M,则LM,若取代X,则LX,若占据间隙位,则Li。

      (5)自由电子e’(代表存在一个负电荷),表示有效电荷。

      (6)电子空穴h·(代表存在一个正电荷),表示有效正电荷。

      如:从NaCl晶体中取走一个Na+,留下一个空位造成电价不平衡,多出负一价。相当于取走Na原子加一个负有效负电荷,e失去→自由电子,剩下位置为电子空穴h·

      (7)复合缺陷

      同时出现正负离子空位时,形成复合缺陷,双空位。

      VM+VX→(VM- VX)

      晶体晶体

      缺陷反应方程式

      必须遵守三个原则

      (1)位置平衡——反应前后位置数不变(相对物质位置而言)

      (2)质点平衡——反应前后质量不变(相对加入物质而言)

      (3)电价平衡——反应前后呈电中性

      例:将CaCl2引入KCl中:

      将CaO引入ZrO2中

      注意:只从缺陷反应方程看,只要符合三个平衡就是对的,但实际上往往只有一种是对的,这要知道其它条件才能确定哪个缺陷反应是正确的。

      确定(1)式密度增加,要根据具体实验和计算。

      只要晶体的温度高于绝对零度,原子就要吸收热能而运动,但由于固体质点是牢固结合在一起的,或者说晶体中每一个质点的运动必然受到周围质点结合力的限制而只能以质点的平衡位置为中心作微小运动,振动的幅度随温度升高而增大,温度越高,平均热能越大,而相应一定温度的热能是指原子的平均动能,当某些质点大于平均动能就要离开平衡位置,在原来的位置上留下一个空位而形成缺陷,实际上在任何温度下总有少数质点摆脱周围离子的束缚而离开原来的平衡位置,这种由于热运动而产生的点缺陷——热缺陷。

      热缺陷两种基本形式:

      a-弗仑克尔缺陷,

      b-肖特基缺陷

      (1)弗仑克尔缺陷

      具有足够大能量的原子(离子)离开平衡位置后,挤入晶格间隙中,形成间隙原子离子),在原来位置上留下空位。

      特点:空位与间隙粒子成对出现,数量相等,晶体体积不发生变化。

      在晶体中弗仑克尔缺陷的数目多少与晶体结构有很大关系,格点位质点要进入间隙位,间隙必须要足够大,如萤石(CaF2)型结构的物质空隙较大,易形成,而NaCl型结构不易形成。总的来说,离子晶体,共价晶体形成该缺陷困难。

      晶体晶体

      (2)肖特基缺陷

      表面层原子获得较大能量,离开原来格点位跑到表面外新的格点位,原来位置形成空位这样晶格深处的原子就依次填入,结果表面上的空位逐渐转移到内部去。

      特点:体积增大,对离子晶体、正负离子空位成对出现,数量相等。结构致密易形成肖特基缺陷。

      晶体热缺陷的存在对晶体性质及一系列物理化学过程,导电、扩散、固相反应、烧结等产生重要影响,适当提高温度,可提高缺陷浓度,有利于扩散,烧结作用,外加少量填加剂也可提高热缺陷浓度,有些过程需要最大限度避免缺陷产生,如单晶生产,要非常快冷却。

      组成缺陷

      主要是一种杂质缺陷,在原晶体结构中进入了杂质原子,它与固有原子性质不同,破坏了原子排列的周期性,杂质原子在晶体中占据两种位置(1)填隙位(2)格点位电荷缺陷(Charge defect)从物理学中固体的能带理论来看,非金属固体具有价带,禁带和导带,当在OR时,导带全部完善,价带全部被电子填满,由于热能作用或其它能量传递过程,价带中电子得到一能量Eg,而被激发入导带,这时在导带中存在一个电子,在价带留一孔穴,孔穴也可以导电,这样虽末破坏原子排列的周期性,在由于孔穴和电子分别带有正负电荷,在它们附近形成一个附加电场,引起周期势场畸变,造成晶体不完整性称电荷缺陷。

      例:纯半导体禁带较宽,价电带电子很难越过禁带进入导带,导电率很低,为改善导电性,可采用掺加杂质的办法,如在半导体硅中掺入P和B,掺入一个P,则与周围Si原子形成四对共价键,并导出一个电子,叫施主型杂质,这个多余电子处于半束缚状态,只须填加很少能量,就能跃迁到导带中,它的能量状态是在禁带上部靠近导带下部的一个附加能级上,叫施主能级,叫n型半导体。当掺入一个B,少一个电子,不得不向其它Si原子夺取一个电子补充,这就在Si原子中造成空穴,叫受主型杂质,这个空穴也仅增加一点能量就能把价带中电子吸过来,它的能量状态在禁带下部靠近价带顶部一个附加能级,叫受主能级,叫P型半导体,自由电子,空穴都是晶体一种缺点缺陷在实践中有重要意义:烧成烧结,固相反应,扩散,对半导体,电绝缘用陶瓷有重要意义,使晶体着色等。

      线缺陷

      实际晶体在结晶时,受到杂质,温度变化或振动产生的应力作用或晶体由于受到打击,切割等机械应力作用,使晶体内部质点排列变形,原子行列间相互滑移,不再符合理想晶体的有序排列,形成线状缺陷。

      位错直观定义:晶体中已滑移面与未滑移面的边界线。

      这种线缺陷又称位错,注意:位错不是一条几何线,而是一个有一定宽度的管道,位错区域质点排列严重畸变,有时造成晶体面网发生错动。对晶体强度有很大影响。

      位错主要有两种:刃型位错和螺型位错。

      晶体晶体

      刃型位错

      其形式可以设想为:在一完整晶体,沿BCEF晶面横切一刀,从BCAD,将ABCD面上半部分,作用以压力δ,使之产生滑移,距离(柏氏矢量晶格常数或数倍)滑移面BCEF,滑移区ABCD,未滑移区ADEF,AD为已滑移区交界线—位错线。

      正面看简图:

      滑移上部多出半个原子面,就象刀刃一样(劈木材)称刃型位错。

      特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。

      螺型位错

      其形成可设想为:在一完整晶体,沿ABCD晶面横切一刀,在ABCD面上部分沿X方向施一力δ,使其生产滑移,滑移区ABCD未滑移区ADEF,交界线AD(位错线)

      特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。

      刃型位错与螺型位错

      a-正常面网,

      b-刃型位错,

      c-螺型位错

      主要从各自特点区别

      晶体晶体

      刃型:滑移方向与位错线垂直,多半个原子面,位错线可为曲线。

      螺型:滑移方向与位错线平行,呈螺旋状,位错线直线。

      由于位错的存在对晶体的生长,杂质

      在晶体中的扩散,晶体内镶嵌结构的形成及晶体的高温蠕变性等一系列性质和过程都有重要影响。

      晶体位错的研究方法:通常用光学显微镜,X光衍射电子衍射和电子显微镜等技术进行直接观察和间接测定。

      位错具有以下基本性质:

      (1)位错是晶体中原子排列的线缺陷,不是几何意义的线,是有一定尺度的管道。

      (2)形变滑移是位错运动的结果,并不是说位错是由形变产生的,因为一块生长很完事的晶体中,本身就存在很多位错。

      (3)位错线可以终止在晶体的表面(或多晶体的晶界上),但不能终止在一个完事的晶体内部。

      (4)在位错线附近有很大应力集中,附近原子能量较高,易运动。

      面缺陷

      涉及较大范围(二维方向)、晶界、晶面、堆垛层错。

      晶面不对称

      晶体晶体

      发现UO2+X,可以看作U3O8在UO2中的固溶体,当负离子过剩进入间隙位置时,结构中必须出现两个电子空穴,以平衡整体电中性,相应正离子电价升高,电子空穴在电场作用下产生运动,这种材料称P型半导体。

      形成正离子空位

      由于存在正离子空位,为保持电中性,在正离子空位周围捕获电子空位,因此其也是P型半导体,如Cu2O、FeO即是。例:FeO在氧气下形成这种缺陷,实际上是Fe2O3在FeO中形成的固溶体(高价取代低价),即2个Fe3+取代3个Fe2+,同时在晶格中形成个正离子空位,在氧气条件下,氧气进入FeO晶格结构中,变为氧离子,必须从铁离子获得两个电子,使Fe2+→Fe3+,并形成VFe。

      可见,非化学计量化合物缺陷的形成主要受气氛影响,也与温度有关,严格说,世界上所有化合物都是非化学计量的,只是程度不同而已。

      熔沸点

      晶体晶体

      不同晶体类型

      一般为:原子晶体>离子晶体>分子晶体。金属晶体的熔沸点有的很高(如钨),有的很低(如汞)。

      同种类型晶体

      (1)同属金属晶体

      (2)同属原子晶体

      (3)同属离子晶体

      (4)同属分子晶体

      结晶

      结晶分两种,一种是降温结晶,另一种是蒸发结晶。降温结晶:首先加热溶液,蒸发溶剂成饱和溶液,此时降低热饱和溶液的温度,溶解度随温度变化较大的溶质就会呈晶体析出,叫降温结晶。

      蒸发结晶:蒸发溶剂,使溶液由不饱和变为饱和,继续蒸发,过剩的溶质就会呈晶体析出,叫蒸发结晶。