-
相关系数
相关系数
相关系数最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关表和相关图反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系密切程度的统计指标。相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
需要说明的是,皮尔逊相关系数并不是唯一的相关系数,但是最常见的相关系数,以下解释都是针对皮尔逊相关系数。
依据相关现象之间的不同特征,其统计指标的名称有所不同。如将反映两变量间线性相关关系的统计指标称为相关系数(相关系数的平方称为判定系数);将反映两变量间曲线相关关系的统计指标称为非线性相关系数、非线性判定系数;将反映多元线性相关关系的统计指标称为复相关系数、复判定系数等。
目录
- 1 基本信息
2 定义
3 性质
4 不相关和独立
5 生活示例
6 应用
7 缺点
8 另请参阅
基本信息
中文名:相关系数
基本释义:度量两个变量间的线性关系
描述:线性关系
设计者:卡尔·皮尔逊
外文名:Correlation coefficient
常用:皮尔逊相关系数
特点:无量纲
定义
相关系数
相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。
定义式
其中,Cov(X,Y)为X与Y的协方差,Var为X的方差,Var为Y的方差
复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。
典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。
性质
相关系数
这里,,是一个可以表征和之间线性关系紧密程度的量。它具有两个性质:(1)
(2)的充要条件是,存在常数a,b,使得
由性质衍生:
a. 相关系数定量地刻画了 X 和 Y的相关程度,即越大,相关程度越大;对应相关程度最低;
b. X 和Y 完全相关的含义是在概率为1的意义下存在线性关系,于是是一个可以表征X 和Y 之间线性关系紧密程度的量。当较大时,通常说X 和Y相关程度较好;当较小时,通常说X 和Y相关程度较差;当X和Y不相关,通常认为X和Y之间不存在线性关系,但并不能排除X和Y之间可能存在其他关系。
不相关和独立
若X和Y不相关,,通常认为X和Y之间不存在线性关系,但并不能排除X和Y之间可能存在其他关系;若,则X和Y不相关。
若X和Y独立,则必有,因而X和Y不相关;若X和Y不相关,则仅仅是不存在线性关系,可能存在其他关系,如,X和Y不独立。
因此,“不相关”是一个比“独立”要弱的概念。
生活示例
软件公司在全国有许多代理商,为研究它的财务软件产品的广告投入与销售额的关系,统计人员随机选择10家代理商进行观察,搜集到年广告投入费和月平均销售额的数据,并编制成相关表,见表1:
表1广告费与月平均销售额相关表 单位:万元
年广告费投入 | 12.5 | 15.3 | 23.2 | 26.4 | 33.5 | 34.4 | 39.4 | 45.2 | 55.4 | 60.9 |
---|---|---|---|---|---|---|---|---|---|---|
月均销售额 | 21.2 | 23.9 | 32.9 | 34.1 | 42.5 | 43.2 | 49.0 | 52.8 | 59.4 | 63.5 |
参照表1,可计算相关系数如表2:
序号 | 广告投入(万元) x | 月均销售额(万元) y | |||
---|---|---|---|---|---|
1 2 3 4 5 6 7 8 9 10 | 12.5 15.3 23.2 26.4 33.5 34.4 39.4 45.2 55.4 60.9 | 21.2 23.9 32.9 34.1 42.5 43.2 49.0 52.8 59.4 63.5 | 156.25 234.09 538.24 696.96 1122.25 1183.36 1552.36 2043.04 3069.16 3708.81 | 449.44 571.21 1082.41 1162.81 1806.25 1866.24 2401.00 2787.84 3528.36 4032.25 | 265.00 365.67 763.28 900.24 1423.75 1486.08 1930.60 2386.56 3290.76 3867.15 |
合计 | 346.2 | 422.5 | 14304.52 | 19687.81 | 16679.09 |
相关系数为0.9942,说明广告投入费与月平均销售额之间有高度的线性正相关关系。
应用
【例】若将一枚硬币抛n次,X表示n次试验中出现正面的次数,Y表示n次试验中出现反面的次数。计算ρXY。
解:由于X+Y=n,则Y=-X+n,根据相关系数的性质推论,得ρXY= − 1。
企业物流
【例】一种新产品上市。在上市之前,公司的物流部需把新产品合理分配到全国的10个仓库,新品上市一个月后,要评估实际分配方案与之前考虑的其他分配方案中,是实际分配方案好还是其中尚未使用的分配方案更好,通过这样的评估,可以在下一次的新产品上市使用更准确的产品分配方案,以避免由于分配而产生的积压和断货。表1是根据实际数据所列的数表。
通过计算,很容易得出这3个分配方案中,B的相关系数是最大的,这样就评估到B的分配方案比实际分配方案A更好,在下一次的新产品上市分配计划中,就可以考虑用B这种分配方法来计算实际分配方案。
聚类分析
【例】如果有若干个样品,每个样品有n个特征,则相关系数可以表示两个样品间的相似程度。借此,可以对样品的亲疏远近进行距离聚类。例如9个小麦品种(分别用A1,A2,...,A9表示)的6个性状资料见表2,作相关系数计算并检验。
由相关系数计算公式可计算出6个性状间的相关系数,分析及检验结果见表3。由表3可以看出,冬季分蘖与每穗粒数之间呈现负相关(ρ = − 0.8982),即麦冬季分蘖越多,那么每穗的小麦粒数越少,其他性状之间的关系不显著。
缺点
需要指出的是,相关系数有一个明显的缺点,即它接近于1的程度与数据组数n相关,这容易给人一种假象。因为,当n较小时,相关系数的波动较大,对有些样本相关系数的绝对值易接近于1;当n较大时,相关系数的绝对值容易偏小。特别是当n=2时,相关系数的绝对值总为1。因此在样本容量n较小时,我们仅凭相关系数较大就判定变量x与y之间有密切的线性关系是不妥当的。
另请参阅
秩相关系数
kendall 秩相关系数
spearman 相关系数
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。